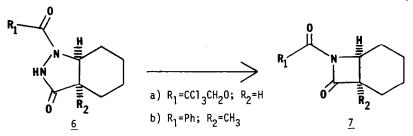
## RING CONTRACTION REACTIONS OF 2-AMINO PYRAZOLIDIN-3-ONES: A NEW SYNTHESIS OF MONO AND BICYCLO 8-LACTAMS

Peter Y. Johnson\*, Norman R. Schmuff and Charles E. Hatch III Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

(Received in USA 6 August 1975; received in UK for publication 2 October 1975)

While approaches to penicillins involving formation of the  $\beta$ -lactam moiety using ring contraction reactions, such as the pyrolytic loss of nitrogen from triazine  $\underline{1}$ , were considered by some of the earliest workers in the field, it has only been in the past several years that any successful  $\beta$ -lactam syntheses incorporating ring contraction steps have been reported. The approach described here utilizes a valence tautomer of the triazene functionality found in  $\underline{1}$ , nitrene 2, which was generated by oxidation of the appropriate 2-aminopyrazolidin-3-one  $\underline{3}$ .


PhcH<sub>2</sub>CONH

$$O = \{ 1, \dots, N \}$$
 $O = \{ 1, \dots, N \}$ 
 $O = \{ 1, \dots,$ 

Our initial investigations in this area have focused on the ring contraction reactions of monocyclic 1-acyl-5,5-dimethylpyrazolidin-3-ones  $\underline{4a}$  and  $\underline{4b}$ . We have found that synthetically useful yields of  $\beta$ -lactams are formed when a solution of 1 equiv of 0-mesitylenesulfonylhydroxyl amine<sup>3</sup> in CH<sub>2</sub>Cl<sub>2</sub> is added at 25° to a mixture of 3 equiv of yellow HgO and the anion of the 1-acylpyrazolidin-3-one in glyme. Starting with the previously reported N-benzoyl compound  $\underline{4a}$ ,  $\frac{4}{a}$  a 72% yield of the known lactam  $\underline{5a}^5$  was isolated (mp 99.5-100° [lit<sup>5</sup>99-101°], ir (CHCl<sub>3</sub>) 1785, 1670 cm<sup>-1</sup>, mass spectrum  $\underline{m/e}$  203 (M<sup>+</sup>)). Likewise from  $\underline{4b}$ ,  $\underline{2a}$  a 39% yield of  $\underline{5b}$  was obtained (ir (CHCl<sub>3</sub>) 1810, 1728 cm<sup>-1</sup>, mass spectrum  $\underline{m/e}$  273 (M<sup>+</sup>)).

In an effort to investigate possible effects of ring strain on this reaction, two cephalo-4089

sporin-like model systems were synthesized and their chemistry studied. cis-Bicyclic 1-acyl pyrazolidin-3-one 6a was available from previous work<sup>6</sup> while 6b was obtained as one diastereomer after catalytic hydrogenation of the corresponding bicyclic acyl hydrazone<sup>7</sup> followed by benzoylation. The stereohomogeneity of 6b was demonstrated by  $^{13}$ C NMR while the cis ring junction was inferred from its chemistry.  $\beta$ -Lactams  $\overline{7a}$  and  $\overline{7b}$  were obtained from  $\underline{6a}$  and  $\overline{6b}$  respectively in 30 - 50% isolated yields after purification by column chromatography. Their spectral properties were similar to those of the analogous monocyclic β-lactams 5a and 5b.8



In the case of 4a a crude intermediate with properties consistent with those of an N-amino compound was isolated, but attempted purification led to its decomposition. Oxidation of the crude material, however, produced 5a in 50% yield. Attempted oxidation of 4a in the absence of aminating agent resulted in recovered starting meterial. These results tend to indicate that the N-amino compound is formed in situ and is subsequently oxidized by mercuric oxide to a N-nitrene (nitrenoid) intermediate.  $^9$  Whether a triazine (e.g.  $\underline{1}$ ) is an intermediate in  $\beta$ -lactam formation or whether the reaction proceeds by a dipolar mechanism $^{10}$  is not clear at this time. Further synthetic and mechanistic aspects of this reaction are presently under investigation.

We wish to acknowledge the National Institutes of Health (Grant No. AI-10389) for financial support.

- References
  (1) H.T. Clark, J.R. Johnson and R. Robinson, Ed., "The Chemistry of Penicillin," Princeton University Press (1949) p. 853.
- (2) (a) P.Y. Johnson and C.E. Hatch, <u>J. Org. Chem.</u>, <u>40</u>, 909 (1975); (b) D.R. Bender, L.F. Bjeldqnes, D.R. Knapp and H. Rapoport, <u>J. Org. Chem.</u>, <u>40</u>, 1264 (1975) and references therein.
- (3) Y. Tamura, J. Monamikawa, K. Sumoto, S. Fuji and M. Ikeda, <u>J</u>. <u>Org</u>. <u>Chem., 38</u>, 1239 (1973).
- (4) H. Stetter and K. Findeinsen, Chem. Ber., 98, 3228 (1965).
- (5) Farbwerke Hoechst A.G., German Patent 1,186,065 (1965), Chem. Abstr., 62, 10382d (1965).
- (6) P.Y. Johnson and C.E. Hatch, in press, J. Org. Chem.
- (7) C. Sabaté-Alduy and J. Lemarte, <u>Bull</u>. <u>Soc</u>. <u>Chim</u>. <u>Fr</u>., 4159 (1969).
- (8) Satisfactory spectral and analytical data were obtained on all new compounds.
- (9) D.M. Lemal in "Nitrenes," W. Lwowski, Ed., Wiley-Interscience, New York, N.Y. (1970).
- (10) A.C. Oehlschlager, P. Tillman and L.H. Zalkow, Chem. Commun., 596 (1965).